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ON THE BOGIE HUNTING IN A TRACK WITH 
RANDOM IRREGULATIRIES 
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Abstract: Hunting movement of a railway vehicle is a consequence of the reversed 
conic shape of the rolling surfaces. When the speed is higher than a particular value – the 
critical speed – the hunting movement has the feature to become unstable limiting the maximal 
speed of a railway vehicle. Running at sub-critical velocities, the vehicle hunting motion is 
forced by the random irregularities of the track alignment and it affects the running behaviour 
and the passengers comfort. The paper deals with the hunting movement of a bogie in the range 
of the sub-critical velocities in the presence of random irregularities of the alignment. The bogie 
model has six degrees of freedom and consists of a suspended mass and two wheelsets related 
to Kelvin-Voigt systems. The wheel/rail friction forces are linear. The elasticity of the track is 
neglected and only the random irregularities of the alignment are taken into account. First, the 
critical velocity is calculated and then the frequency-domain response of the bogie is 
determined for sub-critical velocities. Finally, the acceleration of the bogie due to the 
irregularities of the track alignment is calculated. The influence of some parameters on the 
acceleration is pointed out. 
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1. INTRODUCTION 
 

When a railway vehicle is running along a tangent track, the wheelsets path 
describes a winding line due to the rolling bi-conic surfaces. This kind of motion is 
known as the hunting [5, 12]. 

 

 
Fig. 1. The wheelset motion. 
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Figure 1 gives a picture of the hunting of a wheelset.  If the wheelset takes a 
transversally displaced position, the wheel rolling on a larger diameter will advance 
quicker than the other one, which always stays behind because the wheels are fixed in a 
rigid manner to the axle’s body.  

The wheelset spins around the vertical axis and, eventually, will arrive to the 
track’s middle axis. In this moment, the axle spinning angle will be at its highest value 
and both wheels will roll on even diameters. Next, the wheelset will continue its 
movement, leaving the centre position to the opposite side in respect to the initial 
lateral position, forcing the wheel to roll on smaller and smaller diameters and the 
other one on increasingly larger diameters. Both wheels will reach the same level at the 
precise moment when the axle centre is situated at the maximum distance from the rail 
longitudinal axis. From now on, the movement will repeat itself in reverse.  

In figure 1, the wheelset motion is only kinematical one because no contact 
and inertia forces have been into account.  

In these circumstances, the wavelength of the wheelset motion is  
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where 2e is the lateral distance between the two contact points of the wheels, r – the 
wheel radius and γe represents the equivalent conicity of the rolling profiles of the 
wheels.  

This simple formula has been demonstrated by Klingel in 1883 [4] and it 
shows that the frequency of the wheelset motion increases with the velocity. Indeed, 
the motion frequency of the wheelset is 
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and, as it can be seen, the frequency is proportional to velocity. 
The wheelsets motion is not a pure rolling motion because the vehicle 

wheelsets are connected by the bogies or directly by the carbody chassis. In fact, the 
wheelsets motion is characterized by the so-called creepage representing the slip 
velocity divided by the forward speed. Corresponding to the creepage, the creepage 
forces act in the wheels/rails contact patch. In fact, the creepage forces are friction 
forces. When the creepage values are small, the creepage force increase linear with the 
creepage. In these circumstances, the equations of motion describing the vehicle 
hunting are linear. 

The dynamics of the railway vehicle represents a balance between the forces 
acting between the wheel and the rail, the inertia forces and the forces exerted by the 
suspension and articulation. When the vehicle velocity increases over a particular value 
– the critical velocity, the vehicle motion becomes unstable [11]. Indeed, the wheelset 
has the tendency to oscillate at the frequency of the cinematic oscillation. At low 
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velocities, the frequency is small and the inertia forces are also small. Subsequently, 
the main component of the resultant force acting on the wheelset is the restoring force 
due to the elastic connects between the wheelsets and vehicle body. This force will be 
balanced by the creep force that must be developed. In this way, it results a progressive 
reduction in lateral displacement as the wheelset pursues its oscillatory path. At high 
speeds the inertia forces will dominate, as the frequency is correspondingly high. In 
this case, creep must be developed which will cause a progressive increase in the 
lateral displacement of the wheelset during its lateral oscillation. It follows that there is 
a speed at which the successive overshoots neither grow nor decay, the wheelset then, 
and only then, tracing out a sinusoidal path.  

The instability of railway bogie was studied and linear models have been used 
in many papers [2, 6, 9]. Also, non – linear models were used to study the vehicle/track 
interaction when the motion becomes unstable [7, 8, 10]. 

In fact, the range velocity of the railway vehicles must to be a sub-critical one. 
Indeed, running above the critical speed, the vehicle/track interaction is characterized 
by very high values of forces acting between wheel and rail and this fact contributes to: 
the risk of derailment at higher speeds, damage to track, high level of vibration, with 
bad ride comfort or damage to freight, fatigue failure of the vehicle structure and wear 
of components. 

In this paper, we study the hunting movement from other perspective, 
considering the range of the sub-critical velocities and the presence of random 
irregularities of the alignment. This view point is very interesting because it allows 
describing the dynamic behaviour of the vehicle by means of the acceleration of the 
bogie.  

In this way, we have the possibility to know how the suspension influences the 
running behaviour and this fact could represent a valuable starting point to improve the 
design of the bogie.  
 

2. MECHANICAL MODEL 
 

2.1. Equations of motion 
 

The case of a railway vehicle bogie with two wheelsets running uniformly with 
constant velocity V along a tangent track is considered (fig. 2). The motion is reported 
to the fixed reference Oxy. 

The bogie has a frame of mass mb and mass moment inertia Ib and two 
wheelsets of mass m0 and mass moment inertia I0.  

The suspension has the elastic constants kx and ky and the constants damping 
cx and cy. All elastic and damping elements have linear characteristics. 

 

Only the displacements in the horizontal plan are taken into account, 
respectively, the lateral displacement and the yaw (roll around the vertical axe). The 
bogie displacements are yb and αb and the wheelsets displacements are y1,2 and α1,2. 
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Fig. 2. Mechanical model of the bogie. 

 
Appling the Newton’s law, the equations of motion are obtained as follows: 
- lateral displacement of the bogie frame 
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- yaw of the bogie frame 
 

   
    ;02222

2222

2121
2

2121
2





yyaakbk

yyaacbcI

bybx

bybxbb




       (4) 

 

- lateral displacement of the first (front) wheelset 
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- yaw of the first (front) wheelset 
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-lateral displacement of the second (trailer) wheelset 
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- yaw of the second (trailer) wheelset 
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where 2a is the bogie wheelbase, 2b - the distance between the axle boxes, 2Q – the 
static load of the wheelset, κ- the creepage coefficient determined in accordance to 
Kalker’s theory [3]. 

It has to be underlined that the gyroscopic, restoring gravitational force and 
spin effects have been neglected according to the opinion of many researches [9, 10, 
11]. 
 

2.2. Stability 
 

The first issue that has to be solved consists of the stability analysis. As 
already mentioned, the stability of the vibration of the bogie is related to the so-called 
critical velocity. This is the velocity at which the bogie becomes unstable. In fact, 
while running at a velocity lower than the critical value, the vibration of the bogie is 
stable; on the other hand, when the bogie velocity is higher than the critical one, the 
vibration of the bogie is not stable any longer – the response of the system to any 
infinitesimal perturbation intensifies around the steady state position.  

To calculate the critical velocity, the roots of the characteristic equation of the 
motion equations have to be analysed. To this end, the homogenous equations of 
motion will be considered as follows 

 

0AX ,                                                           (9) 
 

where A is the matrix associated to motion equations and X is the column vector of 
generalized displacements 
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To calculate the roots of the characteristic equation is equivalent to calculate 
the eigenvalues of the A matrix. This calculation can be performed using the 
MATLAB function eig.m.  

Finally, the eigenvalues of the A matrix, more exactly the real part of these 
eigenvalues, will indicate whether the system is stable or not.  
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2.3. Random vibration of the bogie 
 

The second issue refers to the bogie response to random irregularities of the 
track. We assume that the random irregularities are stationary. In fact, these 
irregularities are synthetically described by the power spectral density (P.S.D). ORE 
recommended form can be considered here 
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where  is the wave number, 8246,0c  rad/m, 0206,0r  rad/m, and A = 

2,11910-7 rad m or A = 6.12510-7 rad m, depending on the track quality. 
The track irregularities are the excitation factor for the bogie running at the 

speed V along the track and this is why the P.S.D. irregularities need to be expressed as 
a function of the angular frequency  = V 
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Stating from the bogie frequency-domain response described by the column vector  
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and the track irregularities P.S.D., the column vector of the acceleration P.S.D. can be 
calculated  
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and then, the column vecotor of the r.m.s. acceleration  
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In fact, we are interested only by the range frequency of 0 – 20 Hz, and the 
limit of integration is removed corresponding to the particular value of frequency. The 
frequency response can be calculated considering the harmonic steady state behaviour. 
To this end, the displacements and the excitation have the following form 
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where bY , bA , …, 0 are complex amplitudes, and ω is the angular frequency. 
The equations of motion can be written as 
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where M, C and K are the mass, viscous damping and stiffness matrices. The column 
vectors q  and F are defined as follows 
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Solution of the equation (20) can be obtained  
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Finally, the frequency-domain response of the bogie can be calculated  
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Now, introducing the frequency-domain response of the bogie in equations 
(17) and (18), we can calculate the r.m.s. acceleration, obtaining an interesting 
description of the bogie running behaviour. 
 

3. NUMERICAL APPLICATION 
 

This chapter showcases the results of a numerical application done for Y32 
bogie that travels at different velocities on a tangent track with random irregularity. 
The track irregularity PSD from equation (14) is taken into account. 

The parameters of the bogie model are as such: mb= 3700 kg, Ib = 3800 kgm2, 
m0= 1400 kg, I0 = 790 kgm2, kx = 50 MN/m, ky = 7 MN/m, cx = 30 kNs/m, cy = 11 
kNs/m, 2e = 1.5 m, 2a = 2.56 m, 2b = 2 m, r = 0.445 m, γe = 0.124, κ = 188, 2Q = 110 
kN. The equivalent conicity value corresponds to the CFR S 78 wheel profile and UIC 
60 rail. 

First, we calculate the critical velocity following the method presented in the 
section 2.2. The critical velocity of the Y 32 bogie has the value of 259.45 km/h (72.07 
m/s), of 30 % higher than the operational maximum velocity (200 km/h).  

Figure 3 displays the critical velocity versus the longitudinal stiffness for three 
values of the lateral stiffness. In general, the critical velocity depends strongly by both 
longitudinal and lateral stiffness.  
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Fig. 3. Influence of kx on the critical velocity. 

 
The critical velocity increases as long as the longitudinal stiffness increases but 

remains lower then 10 MN/m for all three values of the lateral stiffness. The critical 
velocity has a maximum value depending on the lateral stiffness. Any way, choosing 
primary suspensions parameters is a difficult problem because there are many criteria 
and the critical speed is only one of them. However, for the reference value of the 
longitudinal stiffness, the influence of the lateral stiffness on the critical velocity is 
relatively less evident. This fact is relevant because the stiffness of the suspension 
changes during the operational service.  

 

   
Fig. 4. Frequency-domain response of the bogie. 

 
Next, the sub-critical velocities range is examined. Figure 4 shows the 

frequency-domain response of the bogie at 200 km/h. The lateral displacement of the 
bogie at centre and above the two wheelsets is presented. The response is dominated by 
the frequency of 2.94 Hz.  

On the other hand, the bogie response exhibits a anti-resonance frequency 
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around 11 Hz due to the geometric filter effect. Indeed, the size of irregularities against 
each axle depends on its position. Thus, bearing reference to the track irregularity 
against the bogie centre, the defects against the wheelsets are dephased with ±2πa/Λ. 
Against each wheelset, the irregularity is dephased corresponding to the bogie axle 
base and to the velocity V of traveling over the irregularities of track – all these will 
trigger an imposed movement for the bogie that becomes time function  
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where ω=2πV/Λ is the angular frequency.  
The excitation caused by the track irregularities introduces the factor cosωa/V 

which multiplies the frequency-domain response of the bogie. This excitation mode 
will bring a series of maximum and minimum values that are conditional upon the 
velocity.  

For instance, for the frequencies fn = (2n+1)V/4a with n = 0, 1, 2, …, the bogie 
response is minimum due to the geometric filtering effect. For n = 0 and V = 55, 56 m/s 
(200 km/h), we have 
 

85.104/0  aVf  Hz. 
 

Similar effect has been reported for the vertical vibration of the railway 
vehicles [1]. 

 

 
Fig. 5. Frequency-domain response of the bogie (2-4 Hz). 

 
Figure 5 represents the frequency-domain response for frequencies between 2 

and 4 Hz to point out that the minimum response is signaled at the bogie centre. Also, 
the response above the second wheelset is higher than one above the first wheelset. 

The influence of the velocity on the running behaviour of the bogie is 
presented in figure 6, where the acceleration of the bogie is displayed. In fact, the bogie 
acceleration at the centre and above the two wheelset is calculated using equation (18) 
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to obtain the r.m.s. value for velocities between 50 and 250 km/h. The acceleration 
increases continually little by little up to the velocity of 200 km/h. When the velocity 
passes over this value, the acceleration grows up very strong because the bogie has the 
tendency to lose its stability. The results are consistent with the ones derived from 
previous figure and the acceleration above the second wheelset is highest. Then, the 
acceleration above the first wheelset follows. 

 

 
Fig. 6. Bogie acceleration versus velocity. 

 
Figures 7, 8 and 9 display the bogie acceleration versus the longitudinal 

stiffness kx, when the bogie is running at 200 km/h. For the lateral stiffness has been 
taken into account three values, 4, 7 and 10 MN/m. The bogie acceleration is 
calculated at the centre and above the two wheelsets.  

It can be observed that the bogie acceleration in all three points has the same 
feature depending on the longitudinal stiffness. The acceleration takes the highest value 
above the second wheelset and the lowest ones at the centre.  

 

 
Fig. 7. Bogie acceleration versus longitudinal stiffness at 200 km/h (ky = 4 MN/m). 
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Fig. 8. Bogie acceleration versus longitudinal stiffness at 200 km/h (ky = 7 MN/m). 

 

 
Fig. 9. Bogie acceleration versus longitudinal stiffness at 200 km/h (ky = 10 MN/m). 

 
The stiffness influence on the bogie acceleration depends very much on the 

lateral stiffness. When the value of 4 MN/m is considered for the lateral stiffness, the 
bogie acceleration decreases as long as the longitudinal stiffness value increases (see. 
Fig. 7). However, increasing the longitudinal stiffness beyond the value of 2 MN/m, 
the bogie acceleration remains practically constant. 

Different story can be seen in figures 8 and 9, where it seems that we have 
particular value of kx that correspond to the minimum acceleration.  

Figures 10, 11 and 12 show the influence of the longitudinal stiffness on the 
bogie acceleration above the second wheelset at three velocities, 100, 150 and 200 
km/h taking in consideration the same values of the lateral stiffness, 4, 7 and 10 MN/m. 
When the speed decreases, the influence of the longitudinal stiffness on the bogie 
acceleration became imperceptible for a large range between 10 and 100 MN/m. This 
aspect seems to be independent on the value of the lateral stiffness. 
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Fig. 10. Bogie acceleration above the second wheelset versus longitudinal stiffness for  

different speeds and ky = 4 MN/m. 
 

 
Fig. 11. Bogie acceleration above the second wheelset versus longitudinal stiffness for  

different speeds and ky = 7 MN/m. 
 

 
Fig. 12. Bogie acceleration above the second wheelset versus longitudinal stiffness for 

 different speeds and ky = 10 MN/m. 
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4. CONCLUSIONS 

 
In this paper, the hunting movement of a bogie in the range of the sub-critical 

velocities in the presence of random irregularities of the alignment is studied in order 
to point out the influence of the suspension stiffness on the running behaviour. For this 
task, the six degree of freedom bogie model including the suspended mass and two 
wheelsets related to Kelvin-Voigt systems is considered. The wheel/rail friction forces 
are linear. The elasticity of the track is neglected and only the random irregularities of 
the alignment are taken into account.    

When the bogie speed is high, relatively close to critical value, the influence of 
the suspension stiffness on the bogie acceleration is important and we can speak about 
the best value of the stiffness. However, at relative low velocities, the influence of the 
suspension stiffness is less obvious.  
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